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Townsend’s (1980) model of wind-to-wave energy transfer, which is based on a
putative interpolation between an inner, viscoelastic approximation and an outer,
rapid-distortion approximation and predicts an energy transfer that is substantially
larger (by as much as a factor of three) than that predicted by Miles’s (1957) quasi-
laminar model, is revisited. It is shown that Townsend’s interpolation effectively
imposes a rapid-distortion approximation throughout the flow, rather than only in
the outer domain, and that his asymptotic (far above the surface) solution implicitly
omits one of the two admissible, linearly independent solutions of his perturbation
equations. These flaws are repaired, and Townsend’s dissipation function is modified
to render the transport equation for the perturbation energy of the same form as
those for the perturbation Reynolds stresses. The resulting wind-to-wave energy
transfer is close to that predicted by Townsend’s (1972) viscoelastic model and other
models that incorporate the perturbation Reynolds stresses, but somewhat smaller
than that predicted by the quasi-laminar model. We conclude that Townsend’s (1980)
predictions, although closer to observation than those of other models, rest on flawed
analysis and numerical error.

1. Introduction
Townsend (1980) calculates the perturbation Reynolds stresses in a turbulent shear

flow with the basic mean velocity U(z)− c over the surface wave

z = a cos kx ≡ h0(x) (ka� 1), (1.1)

in a reference frame moving with the wave speed c = (g/k)1/2, by interpolating between
an inner, viscoelastic approximation and an outer, rapid-distortion approximation. He
predicts a wind-to-wave energy transfer that is substantially larger (by as much as a
factor of three) than that predicted by the quasi-laminar model (Miles 1957, 1959),
in which the perturbation Reynolds stresses are neglected, and by other models
that incorporate the turbulent Reynolds stresses (see Townsend 1972; Mastenbroek
1996; Mastenbroek et al. 1996; and the papers cited in § II.2.5 of Komen et al.
1994) but nevertheless predict energy transfers close to that of the quasi-laminar
model. However, Townsend’s (1980) predicted energy transfer is closer to observation,
which, together with recent (Mastenbroek et al. 1996) experimental evidence of rapid
distortion in turbulent flow over water waves (see Belcher & Hunt (1998) for a review
of rapid distortion in the present context), suggests that his model be revisited. (All
subsequent references to Townsend are to his 1980 paper unless explicitly noted
otherwise.)
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While it lies beyond the scope of this note to undertake a critical review of
turbulent stress modelling in the wind-wave problem, for the sake of completeness we
note that Belcher, Newley & Hunt (1993) introduce a novel proposal for determining
the perturbation Reynolds stress based on the asymmetric pressure field induced by
their mechanism of ‘non-separated sheltering’. Their analytic solution, based upon a
simple mixing-length closure hypothesis in the inner region, does yield larger values
of energy-transfer coefficient β; indeed their figure 11 shows a coincidence of their
prediction with that of Townsend. We simply note that the coincidence is just that: as
our work here indicates, Townsend’s value must be corrected considerably downward.
There is, in any case, no apparent reason for the Townsend model, which lacks
non-separated sheltering, to agree with Belcher et al. (1993), which has it.

We present here a modification of Townsend’s model in which: (i) the Carte-
sian coordinates (x, z) are replaced by wave-following coordinates (ξ, η), which map
the surface wave (1.1) on η = 0, thereby avoiding the projection of the boundary
conditions in a region of strong shear; (ii) wx, the streamwise derivative of the
(Reynolds-averaged) vertical velocity, which he neglects, is restored in his approxi-
mation to the energy-transport equation; (iii) his dissipation length is generalized to
allow for the departure of τ/e, the ratio of shear stress to turbulent intensity, from its
equilibrium (undisturbed flow) value; (iv) his interpolation between the viscoelastic
and rapid-distortion domains, which effectively imposes a rapid-distortion approxi-
mation throughout the flow rather than only in an outer domain, is replaced by a true
interpolation; (v) his asymptotic (kz ↑ ∞) solution, which implicitly omits one of the
two admissible, linearly independent solutions to the fourth-order differential equa-
tion for the perturbation stream function, is corrected; (vi) his numerical integration
is replaced by a more tightly controlled procedure. These modifications are, in our
view, necessary to render the implementation of Townsend’s model consistent with his
verbal description of that model. They lead to a predicted energy transfer that is close
to those of the other models cited above; however, most of the difference between
Townsend’s and the present results appears to reflect numerical error in Townsend’s
solution.

Townsend adopts the logarithmic profile

U(z) = (U∗/K) log (z/z0) (z � z0) (1.2)

(U∗ ≡ τ
1/2
0 is the friction velocity, K ' 0.41 is Kármán’s constant, and z0 is the

effective roughness). This profile is singular at z = 0, but it may be replaced by

U(z) = (U∗/K) log [1 + (z/z0)], (1.3)

which satisfies U(0) = 0. However, the energy transfer to the wave proves to be rather
insensitive to the details of the flow in z = O(z0); see § 6.

The characteristic lengths for our problem are 1/k, z0, zc (the elevation of the
critical layer, at which U = c), and U2∗/g, which are related by

zc

z0

= eKc/U∗ − 1, C∗ ≡ gz0

U2∗
= kz0

(
c

U∗

)2

, (1.4a, b)

where C∗ is Charnock’s constant. (Ω ≡ gz0/U
2
1 = K2C∗ in Miles (1959).) Following

Komen et al. (1994), we choose c/U∗ and C∗ as the primary parameters in the
subsequent development (Townsend chooses c/U∗ and kz0); a representative value of
C∗ is 1.44× 10−2, which implies kz0 ' 10−4 for c/U∗ = 12. Two additional parameters
(a1 and b) appear through Townsend’s Reynolds-stress closure (see § 3).



On Townsend’s rapid-distortion model 177

In § 2, we posit the Reynolds-averaged equations for the mean perturbation velocity
and stresses and introduce a perturbation stream function in the wave-following coor-
dinates. In § 3, as a first step towards a Reynolds-stress closure, we modify Townsend’s
energy-transport equation by restoring wx (which he neglects) and neglecting the lat-
eral transport of turbulent energy (which he models by a gradient-diffusion term).†
More importantly, we modify his dissipation length (carried over from his 1972 paper)
by allowing for the departure of τ/e from its equilibrium value a1. This introduces an
additional parameter µ, which we ultimately choose to render the transport equation
for the perturbation energy of the same form as those for the perturbation Reynolds
stresses.

In § 4, we consider the calculation of the wave-induced perturbation Reynolds
stresses σ̂ = −〈u′2−w′2〉−σ0 and τ̂ = −〈u′w′〉− τ0 (all stresses herein are true stresses
divided by density) in an inner domain, in which they satisfy a viscoelastic equation
of the form

(D+ λ)[σ̂, τ̂] = 2a1[σ0, τ0]ε, (1.5)

where D ≡ (U − c)∂ξ , λ ≡ a1/U
′(η), σ0 and τ0 are the equilibrium values, and ε

is a composite strain rate, and in an outer domain, in which Townsend posits a
rapid-distortion approximation of the form

D[τ̂− a1ê, σ̂ − bτ̂] = e0[εA, εB], (1.6)

where ê is the wave-induced perturbation of the turbulent energy, b = σ0/τ0, and εA
and εB are linearly related to ε.

Townsend argues that ‘the simplest way to interpolate between [the inner and outer
approximations (1.5) and (1.6)]’ is to replace D by D+ λ in (1.6) to obtain

(D+ λ)[τ̂− a1ê, σ̂ − bτ̂] = e0[εA, εB]. (1.7)

We agree that this replacement renders the inner and outer transport equations of the
same form, but, in our view, (1.7) remains an outer approximation, whereas Townsend
imposes it throughout the entire flow.

We interpolate between (1.5) and (1.7) by multiplying [εA, εB] by a function I(η)
that tends to 0/1 in the inner/outer limit kη → 0/∞. Moreover, we render the
transport equation for ê of the same form as (1.5) and (1.7) through a modification
of Townsend’s dissipation length.

In § 5, we assume monochromatic motion, for which the wave-induced perturbations
are proportional to exp (ikξ) and the partial differential equations of §§ 2–4 are reduced
to a fourth-order, ordinary differential equation with two boundary conditions at
η = 0 and two asymptotic matching conditions for kη ↑ ∞. The ultimate goal of the
calculation is the energy-transfer coefficient

β ≡ [(ρa/ρw)(U∗/c)2]−1(kcE)−1(∂E/∂t), (1.8)

where ρa/ρw is the air–water density ratio and E is the (slowly changing) surface-wave
energy.

In § 6, we present computations of β for a variety of parametric choices, including
I(η), U(z), b, kz0, and C∗. In sharp contrast to Townsend, all of our numerical
results for the rapid-distortion model lie in the general range exhibited in previous
computations for the quasi-laminar model (Miles 1959) and the closure models of

† The form of Townsend’s gradient-diffusion term is questionable (Bradshaw, Ferriss & Atwell
1967), but both Townsend’s (1972) results and those of Bradshaw et al. support its neglect in the
present context.



178 G. Ierley and J. Miles

Townsend (1972) and Mastenbroek (1996). We conclude that the most probable
explanation of the discrepancy is numerical error in Townsend (1980).

Following some remarks on our integration scheme, we turn in the Appendix
to a careful asymptotic expansion of far-field solutions to the governing fourth-
order equation. Because of numerical considerations, the mixture of exponential and
algebraic solutions makes for a delicate match, one that is often dispatched with, as in
Townsend, by simple omission of the algebraic component. Such omission induces an
artificial, though modest, oscillation in β as a function of c/U∗. We present numerical
evidence that this match is accurately implemented in our computations.

2. Equations of motion
The Reynolds-averaged continuity and Euler equations for the mean perturbation

velocity [u, 0, w] in the Cartesian coordinates [x, y, z] in the reference frame of the
wave (1.1) are

ux + wz = 0, (2.1)

(U − c)ux + (dU/dz)w = −πx + σx + τz, (2.2a)

and

(U − c)wx = −πz + τx, (2.2b)

where the subscripts x and z signify partial differentiation,

π ≡ p

ρ
+ 〈w′2〉, σ ≡ −〈u′2 − w′2〉, τ ≡ −〈u′w′〉, (2.3a–c)

p is the mean perturbation pressure, ρ is the air density, u′ and w′ are the turbulent
fluctuations of u and w, and 〈 〉 implies a Reynolds average.

We mitigate the difficulties associated with the rapid variation of U in the neigh-
bourhood of the interface by introducing the wave-following coordinates ξ and η
through the transformation

x = ξ, z = η + h(ξ, η), (2.4a, b)

where h(ξ, η) maps the interface z = h0(x) on η = 0 and vanishes far above (kη ↑ ∞)
the interface. A suitable choice proves to be (see § 6)

h(ξ, η) = h0(ξ)e−kη. (2.5a, b)

Introducing the stream function

ψ =

∫ η

0

[U(η)− c] dη + [U(η)− c]h+ φ(ξ, η), (2.6)

we cast the linearized mean velocity in the reference frame of the wave in the form

u = ψz ' (1− hη)ψη ' U − c+U ′h+ φη (2.7a)

and

w = −ψx ' −ψξ + hξψη ' −φξ, (2.7b)

where, here and subsequently, U ≡ U(η) and U ′ ≡ dU/dη. Substituting (2.7) into
(2.2) and eliminating π through cross-differentiation, we obtain

∂ξ[(U − c)(φξξ + φηη)−U ′′φ] = σξη + τηη − τξξ. (2.8)
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Continuity of the interfacial velocity (we neglect viscosity and the wind-induced drift
in the water) and evanescence of the wave-induced disturbance imply the boundary
conditions

φ = ch0(ξ), φη = (kc−U ′)h0(ξ) (η = 0) (2.9a, b)

and

φ, σ − σ0, τ− τ0 → 0 (kη ↑ ∞). (2.10)

3. Energy-transport equation
As a first step toward a Reynolds-stress closure, Townsend posits the transport

equation for the turbulent energy 〈q2〉/2 in a form equivalent to

D〈 1
2
q2〉 = D + G− E, D ≡ (U − c)∂ξ, (3.1a, b)

where

D = δKU∗∂z[z∂z〈 1
2
q2〉] (3.2)

represents diffusion, which we henceforth neglect (Townsend chooses δ = 0.3),

G = −〈u′2〉ux − 〈w′2〉wz − 〈u′w′〉(uz + wx) (3.3a)

' σ0φξη + τ0[U
′(η) +U ′′(η)h+ φηη − φξξ] + (τ− τ0)U

′(η) (3.3b)

represents ‘generation’ (Launder, Reece & Rodi 1975), (3.3b) follows from (3.3a)
through (2.1), (2.3b, c), (2.7a, b) and linearization, the subscript zero refers to the basic
flow, and E is the dissipation rate. Townsend’s approximation to G is equivalent to
(3.3a) after neglecting wx therein, but this neglect is unnecessary and inconsistent with
his subsequent rapid-distortion approximation.

The dissipation rate is given by

E = (a1e)
3/2/L, e ≡ 〈q2〉, (3.4a, b)

where L is a dissipation length (L ≡ a
3/2
1 Lε in Townsend’s notation), and a1 ≡ τ0/e0

is the ratio of shear stress to turbulent intensity in the undisturbed flow. Townsend
(1972) argues that L should be proportional to z − h0 near the surface but ‘more
nearly proportional to height above the surface’ for kz = O(1) and posits

L = K(z − h0e
−kz). (3.5)

This is equivalent to L = U∗/U ′(η) ' Kη for the logarithmic profile (with η � z0) in
the present, wave-following coordinates, but we allow for the departure of τ/e from
its equilibrium value a1 by choosing

L =
U∗
U ′(η)

[
1 + µ

(
τ− a1e

τ0

)]
, (3.6)

where µ is a constant (see § 4.3). Combining (3.3b), (3.4a, b), (3.6) and

ê ≡ e− e0, σ̂ ≡ σ − σ0, τ̂ ≡ τ− τ0 (3.7a–c)

and neglecting the diffusion term D in (3.1a), we obtain

(D+ λ)a1ê = 2a1τ0ε+ 2λ(1 + µ)(τ̂− a1ê), (3.8)

where

ε ≡ U ′′h+ φηη − φξξ + bφξη, (3.9)
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a1 ≡ τ0/e0, b ≡ σ0/τ0, λ ≡ a1U
′. (3.10a–c)

Townsend chooses (implicitly) a1 = 1/6. We choose a1 = K2, which differs insignif-
icantly from 1/6 (0.168 vs. 0.167). He does not specify his value of b, but we surmise
from his reference to Launder et al. (1975) that he used their value, b = −1.3, which
also is adopted by Mastenbroek (1996).

4. Reynolds-stress closure
We consider separately the calculation of the perturbation Reynolds stresses in an

inner (viscoelastic) domain in which k|U − c| � a1U
′ and an outer (rapid distortion)

domain in which k|U − c| � a1U
′.

4.1. Viscoelastic domain

Following Townsend, we assume that the perturbation stresses in the inner domain
tend to their equilibrium values:

τ̂ = a1ê, σ̂ = bτ̂. (4.1a, b)

Eliminating ê between (3.8) and (4.1a), we obtain the viscoelastic equation

(D+ λ)τ̂ = 2a1τ0ε, (4.2)

in which the effective strain rate ε is given by (3.9). The effective viscosity is 2a1τ0/(D+
λ), which tends to the mixing-length limit 2KU∗η for kη ↓ 0.

4.2. Rapid-distortion domain

In the outer domain (in which ‘the time scales of the undisturbed flow are long
compared with the time scale of the wave perturbation following the mean flow’),
Townsend posits rapid-distortion approximations equivalent to

D
(
τ̂− a1ê

e0

)
∼ A1(U

′′h+ φηη)− A2φξξ + A3φξη ≡ εA (4.3a)

and

D
(
σ̂ − bτ̂
e0

)
∼ B1(U

′′h+ φηη)− B2φξξ + B3φξη ≡ εB, (4.3b)

where An and Bn (which are plotted vs. U ′/λ = 1/a1, Townsend’s ‘total shear’, in
his figure 5) are ‘the incremental rates of change for suddenly imposed additional
distortions.’ (See Belcher & Hunt (1998) for a discussion of rapid-distortion scaling.)

Townsend argues that ‘the simplest way to interpolate between [the inner and outer
approximations]’ is to replace D by D+ λ in (4.3) to obtain

(D+ λ)(τ̂− a1ê) = e0εA, (D+ λ)(σ̂ − bτ̂) = e0εB. (4.4a, b)

We agree that this replacement is necessary for the matching of the inner and outer
approximations, but it is sufficient only if An = Bn = 0, and we therefore regard (4.4)
as an outer approximation.

4.3. Interpolation

We interpolate between (4.2) and (4.4) by multiplying εA and εB in (4.3a, b) by an
interpolation function I(η) that tends to 0/1 in the inner/outer limit kη → 0/∞.
Moreover, we reduce (3.8) to the same form as (4.2) and (4.4),

(D+ λ)a1ê = 2a1τ0ε, (4.5)
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by choosing µ = −1. Eliminating ê through (4.5) then yields

(D+ λ)τ̂ = 2a1τ0[(1 + Â1)(U
′′h+ φηη)− (1 + Â2)φξξ + (b+ Â3)φξη], (4.6a)

and

(D+ λ)(σ̂ − bτ̂) = 2a1τ0[B̂1(U
′′h+ φηη)− B̂2φξξ + B̂3φξη], (4.6b)

where

Ân ≡ An

2a2
1

I, B̂n ≡ Bn

2a2
1

I. (4.7a, b)

The viscoelastic equation (4.2) is recovered for I = 0. Townsend’s formulation, except
for the present use of wave-following coordinates, the restoration of wx in G(3.3), and
the replacement of (3.5) by (3.6), is recovered for I = 1.

5. Monochromatic motion
The wave-induced perturbations admit the representation

[h, φ, π, σ̂, τ̂] = Re{[H,Φ, P , S , T ]eikξ}, (5.1)

where H . . . are complex functions of η. Transforming (2.8), (2.2a), (4.6a, b) and (2.9),
we obtain

LΦ ≡ ik[(U − c)(Φ′′ − k2Φ)−U ′′Φ] = ikS ′ + T ′′ + k2T , (5.2)

P = S + (ik)−1T ′ +U ′Φ− (U − c)Φ′, (5.3)

T =

(
2a1τ0

D+ λ

)
[(1 + Â1)(U

′′H + Φ′′) + k2(1 + Â2)Φ+ ik(b+ Â3)Φ
′] (5.4a)

and

S = bT +

(
2a1τ0

D+ λ

)
[B̂1(U

′′H + Φ′′) + k2B̂2Φ+ ikB̂3Φ
′], (5.4b)

where Ân and B̂n are given by (4.6), D = ik(U − c), and

Φ = ac, Φ′ = a(kc−U ′) (η = 0). (5.5a, b)

We remark that (5.2) reduces to Rayleigh’s equation if the perturbation Reynolds
stresses are neglected.

We seek the solution of (5.2)–(5.4), subject to (5.5) and null conditions for kη ↑ ∞,
and the corresponding interfacial impedance (cf. Miles (1957), in which α and β are
referred to kaU2

1 , U1 ≡ U∗/K)

α+ iβ ≡ (kaU2
∗ )
−1(P + iT )0 (5.6a)

= (kaU2
∗ )
−1[(b+ i)T + (ik)−1T ′]0 + (c/U∗)2, (5.6b)

where (5.6b) follows from (5.6a) through (5.3), (5.5) and the inner limit S = bT .

6. Numerical results
First we present results taken from both Townsend (1980) and Townsend (1972)

in comparison with our own computation of β as given in (5.6). We then consider
variations on the computation of β to establish the degree of sensitivity to the choice
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Figure 1. A plot of the normalized drag determined from (5.6a) as the sum of the imaginary
component of the perturbation pressure and the real component of the perturbation shear stress.
(a) Townsend’s (1980) rapid-distortion model: the dashed line is the sum of curves in Townsend

(1980) figures 6(a) and 6(b) corresponding to KU(k−1)/τ
1/2
0 = 8 in his notation, and the solid

line indicates our revision. (b) Townsend’s (1972) viscoelastic model: the circles are directly from
Townsend’s table 2 on summing the entries labelled Pi and τr , the dashed line is our smoothed fit,
the solid line is our revision, and the dotted line is the present viscoelastic approximation (I = 0).

of interpolation in Reynolds stress parameterization from the outer to the inner
region, the prescribed value of b, and to the form adopted for the wave-following
coordinate. For reference, we show several computations others have pursued using
different closure schemes. The only major change we observe is the initial correction
to Townsend (1980).

The most striking aspect of figure 1(a) is the large offset of the curve marked
‘original’ (after Townsend), which has a peak value at least three times any other
maximum exhibited here. We considered a variety of effects that might contribute
to the dramatic reduction reported here (‘revised’) and summarize those findings
presently.

An apt comparison for both curves is Townsend’s (1972) seminal extension of the
quasi-laminar model (Miles 1957) to incorporate the perturbation Reynolds stresses.
The open circles in figure 1(b) are taken directly from Townsend’s table 2. As the 1972
model is a special case of (5.2), with I = 0, b = 0 and wx neglected, we have repeated
that computation here. As can be seen in figure 1(b), the results agree tolerably well
with Townsend (1972).

Following Komen et al. (1994, § II.2.3), we use the condition of constant C∗ to fix
the velocity profile in the three solutions of (5.2) illustrated in figure 2(a). These span
a range of interpolants, as I proves the most sensitive factor in the solution of (5.2)–
(5.4). As noted earlier, the choice I = 1 amounts to imposing the rapid-distortion
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Figure 2. (a) The solution of (5.2)–(5.4) for the logarithmic velocity profile with Charnock’s
C∗ = 0.0144 and three different choices of I: I = 1, the rapid-distortion approximation carried all
the way to the surface; I = 0, the present viscoelastic limit; and I = 1− exp (−η), an interpolation
between these limits. The quasi-laminar result (– – –) is shown for comparison. (b) Two closure
models after Mastenbroek (1996): the e–ε model and the Launder et al. model. The dotted line is
the prediction derived from Townsend’s (1972) model, adjusted to kz0 fixed at 10−4, the value used
in Mastenbroek.

approximation all the way to the surface. This yields the curve designated by ‘I = 1’
in figure 2(a) (also the curve labelled ‘revised’ in figure 1a).

The viscoelastic result in figures 2(a) and 1(b) (the dotted line), obtained with I = 0,
is more like the quasi-laminar result in that the response is less peaked at larger c, but
the magnitude of β is considerably less at small c. It seems desirable that I(η) be a
function that attains the viscoelastic limit in the inner region and the rapid distortion
limit in the outer region. A purely heuristic choice is I = 1− exp (−νkη). The β that
emerges, however, does not lie between the nominally limiting curves with I = 0 and
I = 1, but instead lies below I = 0 in the case shown (dotted line, for which ν = 1).
One obvious consideration is that the derivatives of this interpolant are non-zero,
indeed large near the origin, so the limit of ν → ∞ should not be expected to, and
does not, tend smoothly to the I = 1 result. Further comments on the interpolation
appear in the Appendix.

Finally, in figure 2(b), we reproduce two curves after the results from two closure
models previously illustrated in Mastenbroek (1996). The quasi-laminar result provides
a useful point of comparison, and lastly we have introduced a dotted line to indicate
the prediction of the Townsend (1972) model, adjusted for kz0 = 10−4.

Setting aside the purely numerical issues, to which we return later in this section,
one seeks to discover, beyond the interpolation noted above, which other parameters
of the many in the rapid-distortion model, the basic velocity profile, and the wave-
following coordinates significantly affect the interfacial impedance.
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Figure 3. (a) Using the viscoelastic limit (I = 0) from figure 2(a), the parameter b is varied as a test
of sensitivity. Note that b = −1.3 is a generally accepted value. (b) Two parameterizations of the
wave-following coordinate: the solid lines (curves taken from figure 2b) use the simple exponential
form H1(η), the dashed lines show the slight changes with the more elaborately constructed H2(η).

A subtle feature of (5.2)–(5.4) is the delicate relation of A1 to K . As outlined in
the Appendix, there is an algebraically decaying, far-field solution with a decay rate
of −K2(A1 + 2K4)−1/2/2. Thus if A1 < −2K4 ' −0.0565, we can anticipate a large
qualitative change in β. (This was confirmed with a numerical experiment with A1 set
equal to −0.055.)

We digitally scanned Townsend’s figure 5 to extract values for the An and Bn.
After conversion to proper units, we fixed these at An = [−0.0315, 0.1693, 0.2274]
and Bn = [0.2204, 0.7918, 1.7388]. His constant A1 is consistently negative for all a1

(reciprocal of the total shear) less than about 1/2, but remains comfortably shy of
the critical value.

As noted above, figure 2(a) differs from figures 1(a, b) and 2(b) in the assumed
base profile: constant C∗ and constant kz0 respectively. The two results for I = 1,
the rapid-distortion model, cannot be brought into precise coincidence, but in rough
terms, the Charnock result is shifted rightward by about ∆(c/U∗) = 4 and upward by
∆β = 2 relative to the result for constant kz0 = exp (−8); the change is modest.

So too for variation of β(c) with changes in b: computations of the viscoelastic
curve of 2(a) with b = 0 and b = −2.5 are generally parallel, as shown in figure 3(a).
Two other features have – as one might anticipate – only a minor effect: the form of
the wave-following coordinate induced by h(ξ, η), and the precise form of the velocity
profile in the inner region. The first of these is indicated in figure 3(b). The notation
is as follows:

H1(η) = ae−kη (6.1a)
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and

H2(η) = a(1− k)−2{e−kη − [2k − k2(1− k)kη]e−η/z0}, k ≡ kz0. (6.1b, c)

The second form, which in addition to H(0) = 1, satisfies H ′ = H ′′ = 0 (η = 0), is
intended to mitigate the effects of the large derivatives U ′′′ and U ′′′′ in the calculation
of S ′ and T ′′ near the surface. In practice, this has not proved a difficulty. While the
particular choice of wave-following coordinates has some effect on the computed β,
it is clear from figure 3(b) that the effect is slight, as one would expect.

We have also experimented with a second velocity profile, given by (cf. Rotta 1950)

KU/U∗ = log [ζ + (ζ2 + 1)1/2]− ζ[ζ + (ζ2 + 1)1/2]−1, (6.2)

where ζ = ez/(2z0). This form is a constant-stress interpolation from the surface
condition U = 0 to a logarithmic profile for large z. The results for β are perturbed a
maximum of two percent at c = 1, and the difference rapidly decreases to a fraction
of a percent for increasing c.

We defer a discussion of the proper implementation of boundary conditions to the
Appendix, where an asymptotic analysis is set out. For the purpose of the present
discussion, the essential point is that even with a crude choice of the boundary
condition, including even the imposition of a solid wall at large η, the value of β is
not greatly perturbed.

While to bring our formulation into exact conformity with Townsend would require
that we omit the wave-following coordinates, on the evidence of figure 3(b) this is
not a critical factor in comparing results. Similarly, reversion to Townsend’s form
for L in (3.5) is unlikely to effect a substantial increase in β. While there are certain
mathematical concerns that can complicate the solution for large c if µ is set to zero
in (3.6) (or indeed any value other than −1), over the range 10 6 c 6 15 computations
are straightfoward and show at best moderate changes in β.

Finally, given the similarity of the viscoelastic model (I = 0) and the revised
computation for Townsend (1972), it is implausible that omission of wx from G in
(3.3) – the final discrepancy between (5.2) and Townsend – would do much to close the
gap.

In summary, we can find nothing in the formulation of (5.2)–(5.4), or immediately
adjacent models, that could give rise to the anomalously large values of β reported in
Townsend. The discussion in that paper is short on details of the numerical solution,
but, by process of elimination of other sources for that variance, we are left with the
tentative conclusion that the numerical values reported there are in error.

6.1. Comments on numerical issues

The boundary layers characteristic of the solution of (5.2)–(5.4) plainly make it
desirable to use an adaptive step size integrator for the numerical solution. The
sensitivity of β to roundoff error encourages one to use extrapolation for its efficient
approach to high accuracy. Indeed, we find that Richardson-polynomial extrapolation
is a factor of six faster than a fourth-order Runge–Kutta algorithm when both are run
with a local relative error tolerance fixed at 10−12. Speed aside, for a fixed tolerance,
we find that the values of β produced are completely stable to switching among any
of the three independent programs we tested. Moreover, further refinement of the
tolerance to 10−14 makes inconsequential changes in computed values of β.

While we have preferred, for reasons outlined in the Appendix, to compute solutions
integrating from large η to the surface, we have in a few test cases confirmed that
substantially the same values of β can be found by integrating in the other direction.



186 G. Ierley and J. Miles

Errors can be introduced at many stages in the transition from equation to code.
We have tried to minimize these by extensive use of Maple to autogenerate the
Fortran source code whenever possible. Although it is hard to find precise test cases
for (5.2), the general conformity of the values computed here for figure 2(b) with
earlier results in Mastenbroek (1996) is reassuring. The most rigorous consistency test
of independently determined quantities is the excellent agreement of the computed
and predicted asymptotic behaviour (figure 4b in the Appendix).

7. Conclusions
We conclude that the wind-to-wave energy transfer predicted by Townsend’s rapid-

distortion model (after incorporating the present modifications) differs from that
predicted by the quasi-laminar model by an amount that is comparable with the
differences among other models that incorporate the wave-induced Reynolds stresses
and is smaller than the difference between any of these predictions and observation.
This is perhaps surprising, since the critical-layer singularity that plays a crucial role
in the quasi-laminar model is eliminated in these other models. Thus, Mastenbroek
(1996) remarks that ‘When the effect of turbulence was taken into account . . . all
calculations showed that the wave-induced turbulence is responsible for the phase
shift in the pressure that is required for an energy flux to waves.’ And Townsend
(1972) opines that ‘It is surprising that the differences [between the predictions of the
quasi-laminar and viscoelastic models] are not larger since the critical layer . . . is of
central importance in [the quasi-laminar model] while it is merely an unimportant
part of an equilibrium layer if turbulent stresses are included through the turbulent
energy equation.’ But the essential question here is whether the phase jump across the
critical-layer singularity in the quasi-laminar model provides a valid approximation to
the energy transfer from mean to disturbed flow. The situation is reminiscent of that
for stability of a viscous shear flow, in which context Lin (1955, p. 119 ff) remarks
that ‘We have thus an adequate formulation . . . in terms of a differential equation of
the second order [Rayleigh’s equation]. Such a theory should apply if the fluid has
no viscosity to begin with. Whether it gives a proper limiting theory for the viscous
problem has to be examined very carefully.’ This last question is essentially resolved
in the present context by a calculation of the Reynolds stress −ρuw (temporal mean
value in the quasi-laminar flow), the discontinuity of which across the critical layer
gives the wind-to-wave energy transfer; cf. Taylor (1915).

This work was supported in part by the Division of Ocean Sciences of the National
Science Foundation Grant OCE98-03204, and by the Office of Naval Research Grant
N00014-92-J-1171.

Appendix
Using the standard exponential substitution of the Liouville–Green method for the

asymptotic solution of (5.2), it is straightforward, if tedious, to uncover an expansion
of the phase function

Φ ∼ η̂γ1 (log (η̂/z0))
γ2 exp (γ3/ log (η̂/z0)) . . . exp (i[α1η̂ log (η/z0) + α2η̂

+α3Ei(1,− log (η̂/z0)) + α4η̂/ log (η̂/z0) + · · ·]), (A 1)

where the αk and γk are real, and we define η̂ ≡ kη. Formally there is an infinite number
of terms with coefficients αk that precede the determination of the γk . However, as
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only the first of these, α1, enters into the formula for γ1, the first two into γ2 (although
the α contributions happen to cancel), the first four into γ3, and so on, the expansions
can be done in parallel.

As the governing equation is fourth order, we find α1 by solving for the roots of
the fourth-degree polynomial

α2
1[(2K

4 + A1)α
2
1 + 1] = 0. (A 2)

Two roots are zero; the other two constitute an imaginary pair. (This is not auto-
matic as Townsend’s value of A1 is negative.) The double zero leads to a particularly
simple result at next order: α2

2 − 1 = 0, so that one pair of solutions is approximately
exp (±η). The pure imaginary root pair exhibits weak algebraic growth (or decay),
as reflected in γ1. A suitable boundary condition for (5.2) is that the numerically
integrated solution match smoothly onto a linear combination of the decaying ex-
ponential and the decaying algebraic solution. For that purpose, we employed the
following expressions:

α1 = −(A1 + 2K4)−1/2, (A 3a)

α2 = (1 +Kc)(A1 + 2K4)−1/2 − (A3 + B1)

2(2K4 + A1)
− b(4K4 + A1)

2(2K4 + A1)
, (A 3b)

γ1 = − 1
2
K2(A1 + 2K4)−1/2, γ2 = −3/2 (A 4a, b)

(after selecting a1 = K2) and a similar, though somewhat simpler, set corresponding
to the real exponential pair. Also, we did in each case carry through the analysis of
α3,4 and γ3 but omit the expressions here because of their length. (Although the Ei
function arises in (A 1), actually it is not needed. We choose our initial condition such
that Φ = 1, hence only the derivative of the Liouville–Green phase function, S ′(η), is
required in computation.)

The existence of a growing exponential solution means that numerical solutions can
only be carried a modest distance when integrating outward from the surface; hence
a preferable strategy is to integrate from large η to the surface. The coefficients in
the asymptotic expansion above can then be used to compute starting values of the
functions and their derivatives provided η is sufficiently large. However, η cannot be
too large or else the desired exponential (exp (−η)) will swamp the algebraic solution.
We have adopted η = 18 as a reasonable compromise to resolve a satisfactory match.

Townsend (1980) evidently (cf. Townsend 1972) matched with a condition of pure
exponential decay, integrating outward from the surface. Whenever the match chosen
has a crude or non-existent relation to the correct far-field phase function, the resulting
β inevitably has coarse oscillations as c (or any other parameter) is varied. Our trials
with matches similar to Townsend’s have hence proved less than satisfactory, although
the results so obtained do not diverge sufficiently far from a more refined computation
to make a qualitative difference in conclusions about β. The likely corollary is that the
large discrepancy between our results for β and Townsend’s depends only marginally
upon a differing approach to the implementation of boundary conditions.

Figure 4 shows a typical computed solution with the logarithm of the amplitude
exhibiting a smooth transition from the initial exponential phase to the far slower
algebraic behaviour at large η. Notice that the solution right up to η = 18 remains
quite smooth. If fewer terms are kept in (A 1), one observes a significant adjustment
region in the vicinity of η = 18 that is attributable to an admixture of the other two
homogeneous solutions. In the expanded view in figure 4(b) a solid line is superposed



188 G. Ierley and J. Miles

–3.0

–3.5

–4.0

–4.5

–5.0
4 6 10 14 18

kη

(b)

lo
g 

|Φ
|2

8 12 16

4

2

0

–2

–4

–6
0 2 6 10 18

(a)
lo

g 
|Φ

|2

4 8 12 1614

Figure 4. Match to two decaying fields at η = 18 for c = 15: (a) shows initial exponential decay
followed by algebraic tail; (b) shows closeup of the algebraic tail, with a superposed line that is
computed according to the asymptotic expansion in (A 1).

to indicate the kη dependence of |φ|2 predicted by (A 1) under the assumption that
only the algebraic mode is present. (The amplitude contribution of the exponential
mode is simply too small to register on the plot when kη is near 18.) A computation
of the phase of φ (not shown) indicates comparable agreement: a drift of about π/10
occurs over six periods.

Within the scope of this model, the most significant determinant of β is the choice
of the interpolant, I . Although we do not see a compelling reason, only convenience
and aesthetics, to adopt the choice of µ = −1, we note that for any other choice
the computation of β can be problematic. The difficulty arises from the resultant
denominator, D + λ, which, at the critical layer, though not vanishing, nonetheless
undergoes rapid change. While at small values of c, for which kη � 1, this is not
a particular problem, when it occurs at kη of order one, as is the case for large
c, the value of β undergoes extreme variation in magnitude and implausibly rapid
oscillations in sign.† The only way to avert this is to invoke some smoothing argument
to adjust the interpolant in the vicinity of the critical layer, but there is no internal
guidance from rapid-distortion theory per se as to how this might be done. Indeed
we must in this respect differ from Townsend’s earlier quoted view that the critical
layer is ‘merely an unimportant part of an equilibrium layer if turbulent stresses
are included through the turbulent energy equation’. The matter does not disappear
entirely; it leaves a potentially awkward vestige, and for this reason we have preferred
to stay with µ = −1 in § 4.3.

† Even with the choice of µ = −1 we find β can oscillate in sign for c larger than about 25. It is
questionable, however, to rely upon a pure logarithmic velocity profile so far from the surface, and
we have not explored the balance of terms that generates the oscillation.
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